2) \(y = -2x^3 + 6x^2 - 3 \) (Identify any Local or Absolute Extrema)

\[f(x) = -6x^2 + 12x \]

Sign of \(f' \):

\[f' = - + - \]

\(-6x(x-2) = 0 \)

Critical Points: \(x = 0 \) or \(x = 2 \)

\(f(0) = -3 \)

(“careful - the \(-6\) impacts the sign of \(f' \))

By First Deriv. Test,

Local Max at \((2, 5)\)

Local Min at \((0, -3)\)

3) \(y = 2x^4 - 4x^2 + 1 \)

Sign of \(f' \):

\[f'(x) = 8x^3 - 8x \]

\[8x(x^2-1) = 0 \]

\[f(0) = 1 \]

By First Deriv. Test,

Local Min at \((-1, -1)\) and \((1, -1)\)

Local Max at \((0, 1)\)

Abs Min at \((-1, -1)\) and \((1, -1)\)

Find where the function is concave up and down

4) \(y = 4x^3 + 21x^2 + 36x - 20 \)

\[f'(x) = 12x^2 + 42x + 36 \]

\[f''(x) = 24x + 42 \]

\[12x^2 + 42x + 36 = 0 \]

\[2x^2 + 7x + 6 = 0 \]

\[(2x + 3)(x + 2) = 0 \]

Critical Points: \(x = -\frac{3}{2} \) or \(x = -2 \)

\(f''(x) = - + + \)

\(x = -\frac{3}{2} \) or \(x = -2 \) are points of

\[f(x) \] concave down \(-\frac{3}{2}, -2\) because \(f''(x) < 0 \)

\(f(x) \) concave up \((-\frac{3}{2}, -2)\) because \(f''(x) > 0 \)

\(f(x) \) concave down \((-2, \infty)\)

\(f(x) \) concave up \((-\infty, -2)\)
8) \[y = -x^4 + 4x^3 - 4x + 1 \]
\[f'(x) = -4x^3 + 12x^2 - 4 \]
\[f''(x) = -12x^2 + 24x \]
\[-12x^2 + 24x = 0 \]
\[-12x(x-2) = 0 \]
Possible Points: \(x = 0 \) or \(x = 2 \)
\[\text{Sign of } f'' = - + - \quad (\text{Notice the } -12 \text{ has an impact}) \]
At:
concave up concave down
\[f(x) \text{ is concave up on } (0, 2) \text{ because } f''(x) > 0 \]
\[f(x) \text{ is concave down on } (-\infty, 0) \cup (2, \infty) \text{ because } f''(x) < 0 \]

Find all points of inflection:

13) \[y = xe^x \]
\[f'(x) = xe^x + e^x \]
\[f''(x) = xe^x + e^x + e^x = xe^x + 2e^x = e^x(x+2) \]
\[e^x(x+2) = 0 \]
\[x = -2 \quad \text{possible point} \]
\[f(-2) = -2e^{-2} \]
\[\text{point at } (-2, -2e^{-2}) \text{ because } f''(x) = 0 \]
\[\text{and concavity changes} \]

18) \[y = x^{1/2}(x+3) \]
\[f'(x) = \frac{1}{2} x^{-1/2} + (x+3) \cdot \frac{1}{2} x^{-1/2} \]
\[f''(x) = \frac{1}{2} x^{-1/2} + \frac{1}{2} \left[(x+3)(-1/2)x^{-3/2} + x^{-1/2} \right] \]
\[f''(x) = \frac{1}{2} x^{-1/2} - \frac{1}{4} (x+3)x^{-3/2} + \frac{1}{2} x^{-1/2} \]
\[= \frac{1}{2} x^{-1/2} - \frac{1}{4} (x+3)x^{-3/2} \]
\[= \frac{1}{4} x^{-3/2} \left[-4x + (x+3) \right] \]
Domain for this function is $X \geq 0$ (because of $x^{1/2}$)

$$f''(x) = -\frac{1}{4} x^{-3/2} (-3x+3) = -\frac{1}{4} (-3) x^{-3/2} (x-1)$$
$$= \frac{3}{4} x^{-3/2} (x-1) = \frac{3(x-1)}{4 \sqrt{x^3}}$$

$f''(x) = 0$ when $x = 1$

Oops! $x = 0$ is not included in the domain of f'' (also pass poi)

pois at $x = 0$ and $x = 1$

because $f''(1) = 0$ and

$f''(0)$ is undefined, and concavity changes at concavity changes

pois to $x = 0$ and $x = 1$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < 2$</td>
<td>falling, concave up</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>horizontal tangent</td>
</tr>
<tr>
<td>$2 < x < 4$</td>
<td>rising, concave up</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>poi</td>
</tr>
<tr>
<td>$4 < x < 6$</td>
<td>rising, concave down</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>horizontal tangent</td>
</tr>
<tr>
<td>$x > 6$</td>
<td>falling, concave down</td>
<td></td>
</tr>
</tbody>
</table>
51) (a) Find Abs Extrema of f and where they occur.
(b) Find any p oi
(c) Sketch a possible graph of f

f is continuous on $[0, 3]$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$0 < x < 1$</th>
<th>$1 < x < 2$</th>
<th>$2 < x < 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-2</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>f'</td>
<td>3</td>
<td>0</td>
<td>DNE</td>
<td>-3</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f''</td>
<td>0</td>
<td>-1</td>
<td>DNE</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Abs Max at $(1, 2)$ Abs Min at $(3, -2)$
(b) no p oi, (concavity does not change)
(e) see above