1. **Review:** How do you differentiate each of the following (all involving some type of powers)?

 (a) $\frac{d}{dx} x^5 = 5x^4$ \hspace{2cm} \text{Power Rule}

 (b) $\frac{d}{dx} (1-4x)^{-3} = -3(1-4x)^{-4} \frac{d}{dx} (1-4x) = -3(1-4x)^{-4} (-4) = 12(1-4x)^{-4}$ \hspace{2cm} \text{Power Rule and Chain Rule}

 (c) $\frac{d}{dx} (e^x) = e^x$

 (d) $\frac{d}{dx} \left(\frac{3x^5}{e^{10}} \right) = e^{10} \cdot \frac{d}{dx} \left(\frac{3x^5}{e^{10}} \right) = e^{10} \cdot \left(\frac{3}{10} \cdot 5x^4 \right) = \frac{3}{2} e^{10} \cdot x^4$

 (e) $\frac{d}{dx} (\ln x^4) = \frac{d}{dx} (4 \ln x) = 4 \cdot \frac{1}{x} = \frac{4}{x}$ \hspace{2cm} \text{ln and constant multiple}

 (f) $\frac{d}{dx} (\ln (2x-3)^{-1}) = \frac{d}{dx} \left(-4 \ln (2x-3) \right) = -4 \cdot \frac{1}{2x-3} \cdot \frac{d}{dx} (2x-3) = -8 \cdot \frac{1}{2x-3}$ \hspace{2cm} \text{ln and chain rule}

 (g) $\frac{d}{dx} (\ln x)^6 = 6 \cdot (\ln x)^5 \cdot \frac{d}{dx} (\ln x) = \frac{6(\ln x)^5}{x}$ \hspace{2cm} \text{Chain Rule and power rule with \ln}

2. **New:** How do you differentiate a constant to a variable power or a variable to a variable power?

 LOG DIFFERENTIATION

 In order to do this, you must set your problem equal to y.

 Remember that you made up the y, so you do not want any y's in your answers.

 (a) $\frac{d}{dx} (2^x) = 2^x \ln 2$

 (b) $\frac{d}{dx} (3^{10x}) = 3^{10x} \ln 3 \cdot 10x^9$

 (c) $\frac{d}{dx} (x^x) = x^x \ln x + x^x \frac{1}{x}$

 $\frac{d}{dx} (e^{10x}) = e^{10x} \cdot 10x^9$ \hspace{2cm} \text{Constant}

 $\frac{d}{dx} (\ln x^4) = \frac{4}{x}$ \hspace{2cm} \text{Constant}

 $\frac{d}{dx} (\ln (2x-3)^{-1}) = -8 \cdot \frac{1}{2x-3}$ \hspace{2cm} \text{Constant}

 $\frac{d}{dx} (\ln x)^6 = \frac{6(\ln x)^5}{x}$ \hspace{2cm} \text{Constant}
Problems involving \(e^{u(x)}\), \(\ln(u(x))\), \(a^{u(x)}\), and \(x^{u(x)}\); find the derivative of each.

1. \(y = x^{2x}\)
2. \(y = 3^x\)

3. \(f(x) = x^{lnx}\)
4. \(f(x) = 4^x\)

5. If \(y = a^{u(x)}\), where \(a\) is a constant, derive a rule for \(y'\).
 (In the future, you may use your rule, or simply use log differentiation to avoid memorizing one more rule. Your choice!)

6. \(y = \ln\left(x\sqrt{x^2 - 4}\right)\)
7. \(y = \ln\left(\frac{x-1}{x+1}\right)\)

8. \(f(x) = \frac{x(2x-1)^{3/2}}{\sqrt{4-3x}}\)