1) Given that f is a differentiable function and $f(1) = -1$ and $f'(1) = 4$, what is the Linear approximation for $f(x)$ near $x = 1$?

What does $f'(x)$ represent?

What does your Linear approximation represent?

2) Find the first derivative for each curve described below:

$y = \sin x$ \hspace{2cm} $y = \csc x$

$y = \cos x$ \hspace{2cm} $y = \sec x$

$y = \tan x$ \hspace{2cm} $y = \cot x$

3) Find the first derivative for each curve described below:

$y = \sin 3x$ \hspace{2cm} $y = \csc^2(x + 3)^3$

$y = \cos(x + 4)^2$ \hspace{2cm} $y = \sec(4 - x)$

$y = \tan^3(4x + 1)^3$ \hspace{2cm} $y = \cot(2x)^3$
1980 AB 7
Let \(p \) and \(q \) be real numbers and let \(f \) be the function defined by:
\[
f(x) = \begin{cases}
1 + 2p(x-1) + (x-1)^2, & \text{for } x \leq 1 \\
qx + p, & \text{for } x > 1
\end{cases}
\]

a. Find the value of \(q \), in terms of \(p \), for which \(f \) is continuous at \(x = 1 \).
b. Find the values of \(p \) and \(q \) for which \(f \) is continuous at \(x = 1 \).
c. If \(p \) and \(q \) have the values determined in part b, is \(f'' \) a continuous function? Justify your answer.

1981 AB 1
Let \(f \) be the function defined by \(f(x) = x^4 - 3x^2 + 2 \).

a. Find the zeros of \(f \).
b. Write an equation of the line tangent to the graph of \(f \) at the point where \(x = 1 \).
c. Find the \(x \)-coordinate of each point at which the line tangent to the graph of \(f \) is parallel to the line \(y = -2x + 4 \).

1981 AB 5 BC 2
Let \(f \) be a function defined by \(f(x) = \begin{cases}
2x + 1, & \text{for } x \leq 2 \\
\frac{1}{2}x^2 + k, & \text{for } x > 2
\end{cases} \).

a. For what values of \(k \) will \(f \) be continuous at \(x = 2 \)? Justify your answer.
b. Using the value of \(k \) found in part a, determine whether \(f \) is differentiable at \(x = 2 \). Use the definition of the derivative to justify your answer.
c. Let \(k = 4 \). Determine whether \(f \) is differentiable at \(x = 4 \). Justify your answer.

1994 AB 3
Consider the curve defined by \(x^2 + xy + y^2 = 27 \).

a. Write an expression for the slope of the curve at any point \((x,y)\).
b. Determine whether the lines tangent to the curve at the \(x \)-intercepts of the curve are parallel.
c. Find the points on the curve where the lines tangent to the curve are vertical.