AP Calculus – 30 Points

Name: ___________________________ Date: ______________

MIDTERM REVIEW QUIZ 1. Take Home. No Internet. No Friends. You may use your notes and your calculator. Must have appropriate work and/or “calculator talk” to get the correct answer. Be prepared for me to call on you to do a problem for the class if you get the problem correct on the quiz.

1) What is the slope of the curve \(y = 3\sin x - 2 \) at its first positive \(x \)-intercept?
 (A) 0.683
 (B) 1.643
 (C) 1.705
 (D) 1.805
 (E) 2

 \[y'_{(x_0)} = \frac{d}{dx} (3\sin x - 2) \bigg|_{x = x_0} = 3\cos x \]
 \(x_0 = \arcsin \left(\frac{2}{3} \right) \approx 0.644

2) The wind chill is the temperature, in degrees Fahrenheit (\(^\circ F \)), a human feels based on the air temperature, in degrees Fahrenheit, and the wind velocity \(v \), in miles per hour (mph). If the air temperature is \(32^\circ F \), then the wind chill is given by \(W(v) = 55.6 - 22.1v^{0.16} \) and is valid for \(5 \leq v \leq 60 \).

 Find \(W'(20) \). Using correct units, explain the meaning of \(W'(20) \) in terms of wind chill.

 \[W'(v) = \frac{d}{dv} (55.6 - 22.1v^{0.16}) = -22.1 \cdot 0.16v^{-0.84} \]
 \[W'(20) = -22.1 \cdot 0.16 \cdot 20^{-0.84} \approx -0.286 \text{ \textdegree F/mph} \]

3) Find the average rate of change of \(W \) over the interval \(5 \leq v \leq 60 \). Find the value of \(v \) at which the instantaneous rate of change of \(W \) is equal to the average rate of change of \(W \) over the interval \(5 \leq v \leq 60 \).

 \[\frac{W(60) - W(5)}{60 - 5} = \frac{55.6 - 22.1(60)^{0.16} - (55.6 - 22.1(5)^{0.16})}{55} \approx -0.253 \text{ \textdegree F/mph} \]

4) Let \(f \) be the function given by \(f(x) = 2e^{4x^2} \). For what value of \(x \) is the slope of the line tangent to the graph of \(f \) at \((x, f(x)) \) equal to 3?

 \[y = \frac{d}{dx} (2e^{4x^2}) = 8xe^{4x^2} \]
 \[3 = 8xe^{4x^2} \]
 \[x = \frac{\ln(3/8)}{4} \approx 0.675 \]

5) The first derivative of the function \(f \) is defined by \(f'(x) = \sin(x^3 - x) \) for \(0 \leq x \leq 2 \). On what interval(s) is \(f \) increasing?

 (A) \(1 \leq x \leq 1.445 \)
 (B) \(1 \leq x \leq 1.691 \)
 (C) \(1.445 \leq x \leq 1.875 \)
 (D) \(0.577 \leq x \leq 1.445 \) and \(1.875 \leq x \leq 2 \)
 (E) \(0 \leq x \leq 1 \) and \(1.691 \leq x \leq 2 \)

 \[f'(x) = \cos(x^3 - x) \cdot (3x^2 - 1) \]

 \[f'(x) > 0 \text{ for all } x \in (a, b), \]
 then \(f \) is increasing on \((a, b) \)

 \[y_1 = \sin(x^3 - x) \]
 \[\text{set window to } x = 0 \text{ to } x = 2 \]

 \[(1, 1.691) \]
6) If \(f'(x) = \sqrt{x^4 + 1} + x^3 - 3x \), then \(f \) has a local maximum at \(x = \)
- (A) -2.314
- (B) -1.332
- (C) 0.350
- (D) 0.829
- (E) 1.234

\[y_1 = (x^4 + 1)^{\frac{1}{2}} + x^3 - 3x \]

\[y_1(x) = 0, x \]

\[f \text{ has a max at } x = 0.350 \]

b/c the sign of \(f'(x) \) changes from (+) to (-)
\[a + x = 0.350 \]

Graph

\[x = -2.314 \]
\[x = 0.350 \]
\[x = 1.234 \]

7) For \(0 \leq t \leq 2\pi \), let \(f'(x) = e^{\sin(2x)} \). On which of the following intervals is \(f \) concave down?

- (A) \((0.333, 1.238) \cup (3.475, 4.379)\)
- (B) \((0.0, 0.333) \cup (1.238, 3.475) \cup (4.379, 6.283)\)
- (C) \((0.785, 3.927, 6.283)\)
- (D) \((0.785, 2.356) \cup (3.927, 5.498)\)
- (E) \((0.785, 2.356) \cup (3.927, 5.498)\)

\[y_1 = e^{\sin(2x)} \]
\[y_1 = y(\sin(2x)) \]
\[y_1 = d(y_1, (x), x) \]
\[y_2 = d(y_1, (x), x) \]

\[0 \leq t \leq 2\pi \]

\[\text{to uncheck } y_1 \text{ & only graph } y_2 \]

8) A particle moves along a straight line with velocity given by \(v(t) = 7 - (1.01)^{-t} \) at time \(t \geq 0 \). What is the acceleration of the particle at time \(t = 3 \)? (2008 Exam)

- (A) -0.914
- (B) 0.055
- (C) 5.486
- (D) 6.086
- (E) 18.087

\[v'(3) = a(3) = 0.0546 \]

9) The velocity, in ft/sec, of a particle moving along the x-axis is given by the function \(v(t) = e^t + te^t \).

What is the average velocity from the time \(t = 0 \) to \(t = 3 \) ?

- (A) 20.086 ft/sec
- (B) 26.447 ft/sec
- (C) 32.809 ft/sec
- (D) 40.671 ft/sec
- (E) 79.342 ft/sec

\[\frac{dy}{dx} = \frac{-3x^2 + y}{3y^2 - x} \]
\[\frac{dy}{dx} = \frac{y - 3}{3y^2 - 1} \]

average velocity = 26.447 ft/sec

10) What is the approximate slope of the tangent to the curve \(x^3 + y^3 = xy \) at \(x = 1 \)?

- (A) -2.420
- (B) -1.325
- (C) 1.014
- (D) -0.698
- (E) 0.267

\[x^3 + y^3 = xy \]
\[1 + y^3 = 3y \]
\[(1 + x^3 = y, x) \]
\[-1.3247179 \to y \]
\[1 \to 1 \]

\[\frac{dy}{dx} = \frac{y - 3}{3y^2 - 1} \]
\[\frac{dy}{dx} = \frac{y - 3}{3y^2 - 1} \]

\[\frac{dy}{dx} \bigg|_{y = -1.3247} = \frac{y - 3}{3y^2 - 1} \]

\[\frac{dy}{dx} \bigg|_{y = -1.3247} = \frac{y - 3}{3y^2 - 1} \]

\[15 - 1104 \]